

WORLD JOURNAL OF ADVANCE HEALTHCARE RESEARCH

Original Article

ISSN: 2457-0400 Volume: 5. Issue: 5. Page N. 59-65 Year: 2021

www.wjahr.com

RESPIRATORY PROBLEMS AND ASSOCIATED FACTORS AMONG RURAL WOMEN IN BANGLADESH: A COMMUNITY BASED STUDY

Sk Md Nafis Kabir¹, Sabia Sultana², Tarun Kanti Hore³, Salamat Khandker⁴ and Professor Sk Akhtar Ahmad⁵*

¹Phase B Resident, Department of Cardiology, Bangabandhu Sheikh Mujib Medical University, Shahabag, Dhaka-1000.
²Medical Consultant, Asia Arsenic Network, Krishnabari, Jashore-7400, Bangladesh.
³Incharge, NCD project, Asia Arsenic Network, Krishnabari, Jashore-7400, Bangladesh.
⁴Professor Department of Public Health, Daffodil International University, Sukrabad Dhaka-1207.
⁵Professor, Department of Occupational and Environmental Health, Bangladesh University of Health Sciences, Mirpur - 1, Dhaka-1216.

Received date: 14 July 2021	Revised date: 04 August 2021	Accepted date: 24 August 2021	
-----------------------------	------------------------------	-------------------------------	--

*Corresponding Author: Professor Sk Akhtar Ahmad

Professor, Department of Occupational and Environmental Health, Bangladesh University of Health Sciences, Mirpur-1, Dhaka-1216. **Email Id:** <u>anon@bdcom.com</u>,

ABSTRACT

Children and women in rural Bangladesh are more vulnerable to respiratory diseases. The current study aimed to investigate the factors that contribute to the occurrence of respiratory illnesses among rural women. A cross-sectional community-based study was carried out among rural women. Initially, households (HH) were selected by systematic random sampling. From 1232 selected HHs, a total of 1232 women who matched the criteria were included as the respondents. Using a questionnaire on respiratory illnesses, data was collected from the respondents. Out of 1232 participating women, 551(44.7%) were found to suffer from respiratory illnesses. Higher age (45 years and above), primary education, joint family, habit of chewing tobacco, and exposure to second-hand smoking were found to be significantly (<.05) associated with the occurrence of respiratory illnesses among women. Higher mean (20.34 ± 11.54) years of cooking, use of traditional stoves and biomass fuel were also found to be significantly(<.05)associated. However, logistic regression analysis revealed that living in a joint family, primary education, use of traditional stoves, and chewing tobacco (1.5 times, 1.4 times, 1.4 times, and 1.1 times respectively) individually had a significant (<.05) ability to develop respiratory illnesses. The respiratory illnesses were nasal block (43%) and nasal discharge (37%), chronic cough (33%). asthma (22%), chest tightness (21%), dyspnoea (21%) and cough with mucus (19%). The study revealed that a higher proportion of rural women suffered from respiratory disorders and a number of factors were found responsible for the occurrence of these problems.

KEYWORDS: Respiratory disease, Asthma, Tobacco chewing, Biomass fuel, Rural women.

INTRODUCTION

Respiratory diseases are regarded as the major contributors to mortality and morbidity globally. It is estimated that each year about 4 million pre-mature deaths occur as a result of chronic respiratory diseases. In 2017, about 545 million people worldwide were reported to be suffering from chronic respiratory diseases, and 3.9 million died, which increased by about 39.8% and 17.8% respectively from 1990 and became the 3rd leading cause of death.^[1,2] A recent report revealed that every year, about 235 million people in the world suffer from asthma and 65 million from COPD (Chronic Obstructive Pulmonary Diseases). More than 3

million people worldwide die from COPD every year. On the other hand, in children, asthma is reported to be a common chronic respiratory disease globally with 14% of all children suffering from it. About 180,000 people worldwide die every year as a result of asthma. Over the last few decades, mortality and morbidity due to asthma have been increasing rapidly, particularly in developing countries, and there has been a sharp rise in the occurrence of asthma as a result of urbanization in recent years.^[3-6]

Worldwide, respiratory diseases are a major public health burden. In low and middle-income countries, like Bangladesh, the burden of respiratory diseases is higher.^[2] According to Global Asthma Report in 2018, among the major causes of the global burden of disease, asthma was 28th and 27th in low-middle countries.^[7] In Bangladesh, recently, it has been reported that asthma and breathing problems are on a steady rise among lowincome people. The overall prevalence of asthma has been reported to be 10.7%.^[2] In 2018, the number of deaths due to lung diseases was 64,762, which was 8.34% of the total deaths in Bangladesh and ranked 7th in the world. The number of deaths due to asthma was 662 in 2018, which was 0.76% of the total deaths.^[8] According to a report, in five years' duration, in Bangladesh, asthma patients increased almost 24% from 2015 to 2019, which was 3326 to 78806 respectively. and in the same period, deaths due to asthma increased about 10 fold. It was estimated that around 200,000 people might die from respiratory diseases in Bangladesh by 2019.^[9]

Several factors have been reported to cause respiratory diseases, and in Bangladesh, most of these factors are evident in different studies.^[2,5,10,11] Air pollution, both indoors and outdoors, is the major risk factor for the causation of respiratory diseases.^[4,12,13] Motor vehicles, industrial emissions, and construction are the major causes of outdoor air pollution in urban areas of Bangladesh.^[14,15] On the other hand, burning biomass fuels and cigarette smoking are the main contributors to indoor pollution and are responsible for respiratory diseases.^[15-17] In terms of air pollution, Bangladesh is one of the most polluted countries in the world, having the exposure to the highest levels of PM-2.5. It was estimated that in 2019, PM-2.5 would be responsible for 74,000 deaths in Bangladesh and 79/100,000 deaths attributable to indoor air pollution. Every year, around 4 million people die prematurely as a result of illnesses attributable to household air pollution due to poor cooking practices.^[15,17,18] It was observed that in Bangladesh the prevalence of respiratory diseases among women was almost same as in men.^[2,6,12] However, asthma was found to occur significantly more frequently among women than in men.^[12] Factors associated with the occurrence of respiratory diseases among rural people, especially among women, were evident in a few studies.^[2,12] Thus, this study was aimed to carry out in the community to investigate respiratory problems and the risk factors responsible for causing such problems among women in rural areas ..

MATERIALS AND METHODS

This was a cross-sectional community-based study carried out to find out the respiratory illnesses and associated factors among rural women. The women who had a history of cooking for more than three years, aged 20 years or more, and resided in the study community for at least five years were the study population. Initially, using systematic random sampling, the households were selected. From the 1232 selected households, the women who met the criteria and agreed to take part in the study were included as the respondents. Ultimately, 1232 rural women were the respondents of this study. The respondents were interviewed face to face using a pretested questionnaire to collect data on sociodemographic characteristics, personal habits, and cooking practices. To assess the respiratory illnesses, a pre-tested questionnaire on respiratory illnesses was used for data collection. Based on the questionnaire, the participant women were asked regarding suffering from any respiratory illness in the previous six months. During data collection to ascertain the respiratory illness, two physicians who were the investigators of this study collected related information from the participants.

The collected data was inputted into a computer and analyzed by using Windows SPSS. The analysis was done based on study objectives and variables. For descriptive analysis, frequency, percentage, mean and standard deviation were performed. Student's t-test was performed for quantitative variables and to find out associations between respiratory problems and socio demographic and other factors, chi-square test was conducted. Binary logistic regression analysis was done to find out the predictors of respiratory disorders.

Ethical approval: The Institutional Ethical Review Committee gave ethical permission for the study. The participant women were briefed before data collection regarding the purpose of the study and the process for data collection. The respondents were also told about their voluntary participation and were free to withdraw themselves from the study and there would be no penalty for withdrawal. The respondents were also assured of the confidentiality of the study and their identity would not be disclosed

RESULTS

Out of 1232 participating women in this study, 551 (44.7%) were found to suffer from respiratory illnesses. The mean age of the respondents was 35.7 ± 11.07 years, and the respondents who suffered from respiratory illnesses had a mean age of 36.7 (±11.259) years, which was significantly (t=-2.895; p=0.004) higher than the women who did not suffer. There was significantly (t=-2.895; p=0.004) an increased tendency for the occurrence of respiratory illnesses with age. The respondents with up-to primary level of education (56.1%) were found to suffer more than the respondents with education above the primary level and the difference was highly significant (χ^2 =14.210; p=0.000). Further, respiratory illnesses were found to occur significantly in a higher proportion among the respondents who lived in joint family. However, the occurrence of respiratory problems did not differ significantly with mean income and type of house. (Table-1).

Characteristics		Respirator	y Problems	Total	Test of
Characteristics		No = 681 (55.3%)	Yes = 551 (44.7%)	n=1232	significance
	Upto 24	160 (23.5)	110 (20.0)	270 (21.9)	
	25-34	187 (27.5)	122 (22.1)	309 (25.1)	χ2=10.764;
A go (yoorg)	35-44	178 (26.1)	157 (28.6)	335 (27.2)	p=0.013
Age (years)	45 and Above	156 (22.9)	162 (29.4)	318 (25.8)	
	Mean±SD	34.8±10.865	36.7±11.259	35.7±11.07	t=2.895; p=0.004
	Non formal	152 (22.3)	141 (25.6)	293 (23.8)	
Education	Upto Primary	345 (50.7)	311 (56.4)	656 (53.2)	$\chi^2 = 14.210;$
Education	SSC	120 (17.6)	63 (11.4)	183 (14.9)	p=0.000
	HSC & Above	64 (9.4)	36 (6.5)	100 (8.1)	
Family Size	Upto 4	428 (62.8)	364 (66.1)	792 (64.3)	$\chi^2 = 1.289; p=0.198$
Family Size	5 and Above	253 (37.2)	167 (33.9)	440 (35.7)	χ = 1.289, p=0.198
Family Type	Nuclear	553 (81.2)	418 (75.9)	971 (78.8)	w2-5 206, n=0 023
Family Type	Joint	128 (18.8)	133 (24.1)	261 (21.2)	χ2=5.206; p=0.023
Monthly Expenditure	Mean±SD	10846±5832	10432±5523	10651 ± 5585	t=1.289; p=0.198
	Katcha	116 (17.0)	81 (14.7)	197 (16.0)	
House Trme	Tin	185 (27.2)	170 (30.9)	355 (28.8)	
House Type	Semi pucca	276 (33.2)	178 (32.1)	404 (32.8)	$\chi^2 = 2.576; p=0.462$
	Pucca	154 (22.6)	122 (22.1)	276 (22.4)	

Table 1: Socio-demographic characteristics and respiratory problems of participating women.	Table 1: Socio-demographic	characteristics and r	respiratory pro	blems of pa	rticipating women.
---	----------------------------	-----------------------	-----------------	-------------	--------------------

Percentage in Parenthesis

Table-2: Tobacco consumption by the participating women.

Tobacco use		Respirator	y Problems	Total=	Test of Significance
		No=681	Yes=551	1232	Test of Significance
Tabaaaa congumed by regnondents	Yes	51 (7.5)	75 (13.6)	126 (10.2)	$\chi^2 = 12.435; \mathbf{p} = 0.000$
Tobacco consumed by respondents	No	630 (92.5)	476 (86.4)	1106 (89.8)	χ – 12.455, μ=0.000
	Jarda	22 (36.1)	39 (63.9)	61 (48.4)	
Type of Tobacco consumption	Tamak	15 (44.1)	19 (55.9)	34 (27.0)	χ^2 = .962; p=0.618
	Gul	14 (45.2)	17 (54.8)	31 (24.6)	
Smoking in home by IIII members	Yes	312 (45.8)	287 (52.1)	599 (48.6)	$\chi^2 = 4.796; \mathbf{p} = 0.029$
Smoking in home by HH members	No	369 (55.3)	268 (44.7)	633 (51.4)	χ – 4.790; p=0.029

Percentage in Parenthesis

Table-3: Cooking practice by the participating women.

Cooling Dreation		Respirator	y Problems	Total= 1232	Test of Significance	
Cooking Practice		No=681	Yes=551	10tal = 1252	Test of Significance	
	Biomass	588 (54.2)	497 (45.8)	1085 (88.1)		
Fuel Types	Gas	55 (57.3)	41 (42.7)	96 (7.8)	χ^2 = 8.304; p=0.016	
	Other	38 (74.5)	13 (25.5)	51 (4.1)	-	
Cooling Store	Traditional	432 (52.2)	395 (47.8)	827 (67.1)	$\chi^2 = 9.399; p=0.002$	
Cooking Stove	Improved	249 (61.5)	156 (38.5)	405 (32.9)	χ = 9.399; p=0.002	
Length of Cooking	Mean±SD (Years)	18.32±11.265	20.34±11.542	19.23±11.475	t=-3.080; p=.002	
	Mean±SD (Hours)	3.53±.714	$3.59 \pm .650$	$3.56 \pm .688$	t=-1.367; p=.172	

Percentage in Parenthesis

This study revealed that none of the respondents were cigarette smokers. However, 10.2% of them used to chew tobacco. And those who had the habit of chewing tobacco, the occurrence of respiratory illnesses amongst them (13.6%) was highly significant (χ^2 =12.435; p=0.000). The tobacco chewed by the respondents was *Jarda* (48.4%). *Tamak* (27.0%) and *Gul* (24.6%). (Table-2) Regarding cooking practice, the participant women were found to cook on average for almost 20 years and

the respondents who suffered from respiratory illnesses, the mean age (20.34±11.542 years) was significantly (t=-3.080; p=.002) higher. Overall, the mean cooking time was 3.56±0.688 hours. However, the daily mean cooking hours did not differ significantly from the occurrence of respiratory illnesses. The women who used biomass fuels and traditional cooking stoves (TCS) for cooking purposes significantly (χ^2 = 8.304; p=0.016 and χ^2 = 9.399; p=0.002 respectively) a higher proportion of them were reported to suffer (45.8% and 47.8% respectively) from respiratory illnesses. (Table-3) The respiratory disorders suffered by the participant women were nasal block (42.9%). nasal discharge (37.0%), chronic cough (33.0%), asthma (21.7%), chest tightness (21.2%), and cough and mucus (19.4%), (Table-4)

Table-4: Respiratory manifestations among the participating women.

Frequency*
267 (21.7)
252 (20.5)
261 (21.2)
406 (33.0)
239 (19.4)
529 (42.9)
456 (37.0)

Binary logistic analysis was performed to assess the impact of the factors which were found to be significantly associated with the occurrence of respiratory illnesses and the manifestations in univariate analysis. (Table-5) The analysis revealed that higher age (age more than 35 years) was a significant and stronger risk factor for asthma, dyspnoea, and chest tightness. Age 35 years and more had 2.2, 2.3, and 2.4 times ability to predict the development of these manifestations respectively, whereas age 45 years and above had 2.4, 2,5 and 2,6 times ability to predict respectively. Education did not show any significant impact except on the occurrence of respiratory illnesses as a whole.

	Nasal block	529 (42.9)	
	Nasal discharge	456 (37.0)	
* Mu	ltiple Responses, Percentage in	Parenthesis	

Cable-5: Risk factors for respiratory illnesses among the participating women. Adjusted Odds Ratio (95% Confidence Interval) and p=value					
		ted Odds Ratio (9	5% Confidence In	/ 1	
Risk Factors	Respiratory	Asthma	Dyspnoea	Chronic	Chest
	Problems	Age (years) - U	Into 24*	Cough	Tightness
	0.699 (0.363-	1.411 (0.852-	1.344 (0.790-	0.760 (0.510-	1.554 (0.926-
25-34	1.346)	2.337)	2.285)	1.133)	2.609)
25- 54	p=.284	2.557) p=.181	p=.275	p=.178	p=.095
	0.681 (0.399-	2.197 (1.238-	2.277 (1.270-	1.071 (0.666-	2.372 (1.329-
35-44	1.163)	3.837)	4.083)	1.720)	4.232)
55-44	p=.150	p=.007	p=.006	p=.778	4.252) p=.003
			p=.006 2.462 (1.104-		
45 and Above	0.888 (0.590-	2.437 (1.116-	2.462 (1.104- 5,499)	0.948 (0.475-	2.579 (1.165-
45 and Above	1.337)	5.321)		1.893)	5.711)
	p=.569	p=.025	p=.028	p=.880	p=.019
		ducation- Non-form		0.000 (0.455	1 712 (0 770
I. D.	1.383 (1.005-	1.543 (0.757-	1.319 (0.630-	0.808 (0.455-	1.713 (0.778-
Upto Primary	1.829)	3.143)	2.764)	1.432)	3.770)
	p=.046	p=.233	p=.463	p=.465	p=.181
000	0.779 (0.503-	1.417 (0.739-	1.375 (0.697-	1.390 (0.852-	1.905 (0.917-
SSC	1.207)	2.719)	2.764)	2.266)	3.957)
	p=.264	p=.294	p=.359	p=.187	p=.081
	0.969 (0.571-	1.093 (0.521-	1.062 (0.490-	0.755 (0.425-	1.685 (0.754-
HSC & Above	1.645)	2.295)	2.301)	1.339)	3.769)
	p=.907	p=.814	p=.878	p=.337	p=.204
		Use- No tobacco*,			
Smokeless	1.687 (1.112-	1.202 (0.774-	1.576 (1.020-	1.979 (1.312-	1.791 (1.165-
Tobacco	2.538)	1.868)	2.437)	2.982)	2.755)
1000000	p=.012	p=.413	p=.041	p=001	p=.008
	1.202 (,951-1.518)	1.460 (1.099-	1.611 (1.201-	1.214 (0.948-	1.692 (1.266-
Smoking in Home	p=.123	1.940)	2.159)	1.555)	2.261)
	1	p=.009	p=.001	p=.125	p=.000
		actice- No Biomass			
	1.164 (0.795-	1.298 (0.787-	1.429 (0.840-	1.129 (0.748-	1.388 (0.832-
Use Biomass Fuel	1.70)2	2.148)	2.430)	1.705)	2.316)
	(p=.435)	p=.307	p=.188	p=.563	p=.210
	1.392(1.078-	1.386 (1.007-	1.397 (1.005-	1.326 (1.008-	1.215 (0.882-
Traditional Stoves	1.799) p=.011	.908)	1.942)	1.745)	1.673)
	, -	p=.045	p=.047	p=.043	p=.233
Cooking Voors	1.002 (0.981-	1.005 (0.981-	1.008 (.984-	1.014 (0.992-	1.006 (0.982-
Cooking Years	1.024)	1.030)	1.033)	1.037)	1.031)

	p=.840	p=.668	p=.523	p=.215	p=.624
		Family Type- Nuc	lear Family*		
	1.454 (1.096-	1.195 (0.848-	0.894 (0.619-	1.693 (1.263-	1.243 (0.879-
Joint family	1.031)	1.664)	1.292)	2.268) p=.015	1.757)
-	p=.010	p=.309	p=.552	times	p=.219

* Reference Category

However, education up to primary level had 1.4 times ability to predict the development of respiratory illnesses. The habit of chewing tobacco was found to be a significant risk factor for the occurrence of respiratory illnesses as a whole, dyspnoea, chronic cough and chest tightness. Respondents with a chewing tobacco habit had 1.7, 1.6, 2.0, and 1.8 times more likelihood of developing these manifestations, respectively. Second hand smoking (smoking at home) was also found as a high risk factor for the causation of asthma, dyspnoea, and chest tightness, with 1.5, 1.6, and 1.7 times more likelihood of developing these manifestations, respectively. Use of TCS was also found to be a risk factor and had 1.4, 1.4, and 1.3 times ability to predict the likelihood of developing respiratory illnesses as a whole, asthma, dyspnoea, and chronic cough, respectively. Living in a joint family, on the other hand, was revealed to be a significant risk factor with 1.5 and 1.7 times more likely to develop respiratory illnesses and chronic cough respectively. (Table-5)

DISCUSSION

This community based study revealed that about 45% of rural women had respiratory disorders. Education, age, family type and cooking experience were significantly associated with respiratory disorders of rural women. It was found that women who had primary education or no formal education suffered significantly more from respiratory illness. This study also found that the participating women with a higher average age suffered from respiratory illnesses in a higher proportion and had an increased tendency to occur with increased age. The participant women who lived in a joint family were also found to suffer significantly more than the women who lived in a nuclear family. This study further revealed that women with higher cooking experience suffered significantly more from respiratory disorders. The relationships between these factors and the occurrence of respiratory illnesses have also been found in different studies in Bangladesh and elsewhere.^[6,12,19-21]

Regarding tobacco consumption, none of the participating women in this study had smoking habits. However, about 10% of them used to chew tobacco and the common tobacco they chewed was *Jarda* followed by *Tamak* and *Gul*. Consuming tobacco is known to cause a higher risk of occurrence of cancer and a variety of respiratory illnesses.^[4,22-23] However, smokeless tobacco [chewing tobacco) users have a lower risk of mortality and the occurrence of diseases than smokers.^[24] The current study showed that a higher proportion of the participating women who had the habit of chewing tobacco, suffered from respiratory illnesses and was

highly significant (p=0.000). A study conducted in a rural community in Bangladesh also found a significant association with chewing tobacco.^[12] Moreover, the women who had exposure to secondhand smoking (smoking in the home) significantly (p=0.029) over half of them (52.1%) suffered from respiratory diseases.

The participating women who used TCS, significantly (p=.002) a higher proportion of them were found to suffer from respiratory illnesses (71.1%) in comparison with those who used ICS. Studies have revealed that the use of ICS, the pollutant emission by the stoves, as well as the exposure of household members, especially women and children, are reduced, thus preventing the occurrence not only of respiratory illness but other diseases, including cancer.^[16,25] Biomass smoke is a major source of indoor air pollution and has been recognized as a major risk factor for the occurrence of various diseases in developing countries. According to a WHO report, biomass smoke is a major environmental risk factor and one of the top ten global risk factors for disease, which accounts for 2.7% of the global disease burden.^[17,26,28] Studies from Bangladesh and elsewhere^[17,25-28], revealed an association between the pollutants emitted by cooking smoke and the occurrence of various illnesses, including acute respiratory infection, asthma, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD), cardio-vascular diseases, burning eyes, and low birth weight. The current study found that the participating women who used biomass fuels, significantly (p=0.016) a higher proportion of them suffered from respiratory illnesses.

The respiratory illnesses suffered by the participating women were nasal block (44%), nasal discharge (37%), chronic cough (33%), asthma (22%) and dyspnoea (21%). The adjusted Odds ratio analysis showed that the risk of occurrence of all these manifestations (except chronic cough) increased (more than 2 times) with increasing age (35 years and above): except for asthma. the risk increased (more than 1.5 times) with chewing tobacco, and except for chronic cough, the risk increased (1.5 times and more) with exposure to second-hand smoking at home. However, the risk of occurrence of chronic cough was found to be higher (1.7 times) among women who lived in joint families. The factors which were found independently responsible for the increased risk of developing overall respiratory disorders were chewing smokeless tobacco (1.7 times), living in a joint family (1.5 times) and the use of traditional stoves (1.4 times).

Limitation: This study was carried out among rural women at the village level. The women were frightened of doing the spirometry test and could not perform it properly even after repeated orientations. For this, the spirometry test of the women was not possible. To ascertain the respiratory diseases, the study physicians collected the necessary information from the women.

CONCLUSION

The current study revealed that a higher proportion of rural women suffered from respiratory illnesses. The respiratory illnesses included nasal block, nasal discharge, chronic cough, asthma and dyspnoea. The factors which were found to increase the risk of respiratory disorders independently were higher age, education up to primary level, habit of chewing tobacco, exposure to second-hand smoking, use of a traditional stove and living in a joint family.

CONFLICT OF INTEREST: The authors do not have any competing interests.

REFERENCES

- Labaki WW and Han MK. Chronic Respiratory Diseases: A Global View. Lancet Respir Med, 2020; 8(6): 531-533. doi:10.1016/S2213-2600(20)30157-0.
- Das A1, Sumit AF and Bhowmick D. Comparison of different chronic respiratory diseases in terms of cigarette smoking: A hospital-based case control study on population of Bangladesh. J Adv Biotechnol Exp Ther, 2021 Sep; 4(3): 298-304. doi.org/10.5455/jabet, 2021; 130.
- NCD Alliance. Chronic Respiratory Diseases. https://ncdalliance.org/why-ncds/ncdmanagement/chronic-respiratory-diseases.
- ASH Fact Sheet. Smoking and Respiratory Disease. Action on Smoking and Health, September, 2020. ash.org.uk/information-and-resources/ash-factsheets/.
- Forum of International Respiratory Societies. The Global Impact of Respiratory Disease – Second Edition. Sheffi eld, European Respiratory Society, 2017.
- Hossain MI, Parvez M, Zohora FT, Islam MS and Bari L. Prevalence of asthmatic respiratory complications among the rural community of Tangail area in Bangladesh. Int J Community Med Public Health, 2018; 5(4): 1291-1297. doi.org/10.18203/2394-6040.ijcmph2018120.
- Global Asthma Network. The Global Asthma Report, 2018. http://globalasthmanetwork. org/GlobalasthmaReport202018Embargo.pdf.
- 8. World Life Expectancy. Bangladesh: Lung Disease. https://www.worldlifeexpectancy.com/ bangladeshlung-disease.
- 9. Sakib SMN. Bangladesh: Air pollution engulfs lives, environment. www.aa.com.tr/en/

environment/bangladesh-air-pollution-engulfs-livesenvironment/2190506.

- Viegi G, Maio S, Fasola S and Baldacci S. Global Burden of Chronic Respiratory Diseases. J Aerosol Medicine and Pulmonary Drug Delivery, 2020; 33(4): 171-177. doi 10.1089/jamp, 2019; 1576.
- 11. WHO. Chronic Respiratory Diseases. World Health Organization, 2021. https://www.who. int/healthtopics/chronic-respiratory-diseases.
- 12. Sultana N, Kabir MH and Sayeed MA. Prevalence of Chronic Bronchitis, Asthma and Allergic Rhinitis in a Rural Community of Bangladesh. Chest & Heart J, 2014; 38(1):
- Yeasmin H, Sayem SM, Misu F and Islam MA. Determinants and impact of asthma disease in Mymensingh zone: An empirical analysis. J Bangladesh Agril Univ, 2018; 16(3): 478–481. doi.org/10.3329 /jbau.v16i3.39445.
- Yeasmin S, Rahman MS, Haidar A, Mullick AR, Hasan MJ, Khan MAS, et al. Traffic Air Pollution and Respiratory Health: A Cross-Sectional Study among Traffic Police in Dhaka City. J Med Sci Clin Res., 2021; 9(5): 93-97. doi.org/10.18535/imscr/v9i5.
- 15. AQLI. Death Toll from Air Pollution Sees Alarming Rise in Bangladesh. Air Quality Life Index.https://aqli.epic.uchicago.edu/news/death-tollfrom-air-pollution-sees-alarming-rise-inbangladesh.
- Dasgupta S, Wheeler D, Huq M, Khaliquzzaman M. Improving indoor air quality for poor families: a controlled experiment in Bangladesh. Indoor Air, 2009; 19(1): 22–32.
- 17. WHO. Household Air Pollution and Health. https://www.who.int/news-room/fact-sheets/ detail/household-air-pollution-and-health.
- HEI. State of Global Air Report, Special Report. Boston, MA Health Effects Institute. https://www.stateofglobalair.org/, 2020.
- 19. Grigsby M, SiddharthanT, Chowdhury MAH, Siddique A, Rubinstein A, Sobrino E, et al. Socioeconomic status and COPD among low- and middle-income countries. Int J COPD, 2016: 11: 2497–2507. doi.org/10.2147/COPD.S111145.
- Alam DS, Chowdhury MA, Siddique AT, Ahmad S and Clemens JD. Prevalence and Determinants of Chronic Obstructive Pulmonary Disease (COPD) in Bangladesh. J Chronic Obstructive Pulmonary Disease, 2015; 12(6): 658-667. doi: 10.3109/ 15412555.2015.1041101.
- Chhabra P, Sharma G and KannanAT. Prevalence of Respiratory Disease and Associated Factors in an Urban Area of Delhi. Indian J Community Med, 2008 Oct; 33(4): 229–232. doi: 10.4103/0970-0218.43227.
- 22. WHO. Tobacco: Leading cause of death, illness and impoverishment https://www.who.int/ news-room/fact-sheets/detail/tobacco.
- 23. CDC. Health Effects and Smoking & Tobacco use Center for Disease Control and Prevention, 2020.

https://www.cdc.gov/tobacco/basic_information/heal th_effects/ index.

- Fisher MT, Tan-Torres SM, Gaworski CL, Black RA and Sarker MA. Smokeless tobacco mortality risks: an analysis of two contemporary nationally representative longitudinal mortality studies. Harm Reduction J., 2019; 16(27): 1-10. doi.org/10.1186/s12954-019-0294-6.
- 25. World Bank. Household Cook stoves, Environment, Health and Climate Change: A new Look at an Old Problem. The Environment Department (Climate Change). The World Bank. May, 2011. https://openknowledge.worldbank.org/handle/10986/ 27589.
- 26. Khalequzzaman M, Kamijima M, Sakai K, Hoque BA and Nakajima T. Indoor air pollution and the health of children in biomass- and fossil-fuel users of Bangladesh: situation in two different seasons. Environ Health Prev Med, 2010; 15: 236–243.
- 27. Khandker S, Ahmad SA, Ahmed R, Mollah AR, Parvez F and Khan MH. Comparison of Respiratory problems among Women and Children of Rural Households using Improved Cook Stove and Traditional Cook Stove. J Preventive Social Med, 2015; 34(1): 8-13.
- Venkataraman C, Sagar AD, Habib G, Lam N and Smith KR. The Indian National Initiative for Advanced Biomass Cookstoves: The benefits of clean combustion. Energ Sustain Dev., 2010; 14: 63-72. doi.org/10.1016/j.esd.2010.04.005.